Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water
نویسندگان
چکیده
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8C and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated. Keywords—2-Propanol, Gasification, Ru/Al2O3, Supercritical water.
منابع مشابه
Hydrogen rich gas production via nano-catalytic gasification of bagasse in supercritical water
Ru/Al2O3 nano-catalysts were prepared with impregnation and microemulsion techniques. The supercritical water gasification reaction was performed at 400oC and 5-60 min. Within the tested operation conditions, the reaction residence time of 15 min was the optimum to maximize the H2 yield. It was observed that using microemulsion technique increases the total gas yield significantly. Using microe...
متن کاملHydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8C and 22.1MPa), water has lower density and viscosity, and a ...
متن کاملA parametric study on supercritical water gasification of Laminaria hyperborea: a carbohydrate-rich macroalga.
The potential of supercritical water gasification (SCWG) of macroalgae for hydrogen and methane production has been investigated in view of the growing interest in a future macroalgae biorefinery concept. The compositions of syngas from the catalytic SCWG of Laminaria hyperborea under varying parameters including catalyst loading, feed concentration, hold time and temperature have been investig...
متن کاملProduction of Hydrogen and Synthesis gas via Cu-Ni/Al2O3 catalyzed gasification of bagasse in supercritical water media
Bagasse as a real biomass was converted to hydrogen rich gas via catalytic supercritical water gasification process. To find the effect of Cu on selectivity of products, Cu promoted Ni-γAl2O3 catalysts were prepared with 1 to 20wt% Ni and 0.5 to 10wt% Cu loadings via impregnation method. Catalysts were characterized by ICP, BET, XRD, H2 chemisorption and TEM technique as well CHNS analysis was ...
متن کاملHydrogenation of Lactic Acid to 1,2‐Propanediol over Ru‐Based Catalysts
The catalytic hydrogenation of lactic acid to 1,2-propanediol with supported Ru catalysts in water was investigated. The influence of catalyst support (activated carbon, γ-Al2O3, SiO2, TiO2, and CeO2) and promoters (Pd, Au, Mo, Re, Sn) on the catalytic performance was evaluated. Catalytic tests revealed that TiO2 yields the best Ru catalysts. With a monometallic Ru/TiO2 catalyst, a 1,2-propaned...
متن کامل